1) Two straight lines are drawn in order to make angles a and b. Tick the statements that are true. Correct any incorrect statements.

〇 $a+b=180^{\circ}$
O If angle a was increased by 50°, then it would equal 140°.

O If angle a was decreased by 75°, then it would equal 10°.

O If angle b was increased by 30°, then angle a would now equal 50°.
\qquad
\qquad
\qquad
2) Calculate the missing angles.

3) What could angles a and b measure? Give two different possibilities for each angle and explain your reasoning.

1) Which of these sets of angles could be angles a, b and c ? Explain why.

Set 1:

$a=90^{\circ}$
$b=71^{\circ}$
$c=22^{\circ}$

Set 2:
$a=90^{\circ}$
$b=45^{\circ}$
$c=45^{\circ}$

Set 3:
$a=89^{\circ}$
$b=61^{\circ}$
$c=30^{\circ}$

Set 4:
$a=90^{\circ}$
$b=64$
$c=26^{\circ}$
2) Two children are calculating the value of angle a.

Who is correct? Explain your reasoning.
\qquad
\qquad
\qquad
3) There are five equal angles around a point. Each angle measures 80°. Nizar thinks each angle measures 80°. Prove why Nizar is incorrect and calculate the correct answer.
\qquad
\qquad

1) Calculate the value of each angle.

Angles $a+b+c=a$ straight line. Now you know the values of a and b, calculate the value of c.

2) In the question above, angle b is one of 6 equal angles formed around a point. How many other whole-number equal angles around a point can be formed?
\square
3) This pie chart shows the favourite colour of each member of a class.

$\frac{1}{3}$ of children have red as their favourite colour.
Nine times as many children prefer blue to green.
Give the number of degrees represented by each colour on the pie chart.

$$
\text { Red }=
$$

Yellow = \qquad

Green = \qquad Blue = \qquad

