St Barnabas (VA) Primary School Progression towards a standard method of calculation

Introduction:

The 2014 National Curriculum provides a structured and systematic approach to the teaching of calculation. The aim is for mental calculations and written procedures to be performed efficiently, fluently, accurately with understanding. Procedures and understanding are to be developed in tandem. End of key stage expectations are explicit in the programme of study.
At St Barnabas (VA) Primary School, we have a consistent approach to the teaching of written calculation methods in order to ensure continuity and progression across the school.

Age related expectations:

This calculation policy is organised according to age appropriate expectations as set out in the National Curriculum 2014, however it is vital that pupils are taught according to the stage that they are currently working at, being moved onto the next level as soon as they are ready, or working at a lower stage until they are secure enough to move on.

Providing a context for calculation:

It is important that any type of calculation is given a real life context or problem solving approach to help build children's understanding of the purpose of calculation, and to help them recognise when to use certain operations and methods. It is also important for children to be confident to use mental and written strategies to explain their thinking. This must be a priority within calculation lessons. Written methods need to be viewed as tools to enable children to solve problems and record their thinking in an organised way.

Aims:

Children should be able to use an efficient method, mental or written appropriate to the given task, with understanding. By the end of year 6, children will have been taught, and be secure with, a compact standard method for each operation.

To develop efficient written calculation strategies children need:

- Secure mental methods which are developed from early years
- A solid understanding of the number system
- Practical hands on experience including a range of manipulatives
- Visual models and images including number lines and arrays
- Experience of expanded methods to develop understanding and avoid rote learning
- Secure understanding of each stage before moving onto the next.

Before carrying out a calculation, children will be encouraged to consider:

- Can I do it in my head? (using rounding, adjustment)
- The size of an approximate answer (estimation)
- Could I use jottings to keep track of the calculation?
- Do I need to use an expanded or compact written method?

Skills for written calculations

Addition and subtraction:

- Do they know all the addition and subtraction facts for all numbers to 20?
- Do they understand place value and can they partition and then re-partition numbers?
- Can they add three single digit numbers mentally?
- Can they add and subtract any pair of two digit numbers mentally?
- Can they explain their mental strategies orally and record them using informal jottings?

Multiplication and Division:

- Do they know the 2, 5 and 10 times tables and corresponding division facts?
- Do they know the result of multiplying by 1 and 0 ?
- Do they understand 0 as a place holder?
- Can they multiply two and three digit numbers by 10 and 100 ?
- Can they double and halve two digit numbers mentally?
- Can they use multiplication and division facts they know to derive mentally other multiplication and division facts that they do not know?
- Can they explain their mental strategies orally and record them using informal jottings?

These lists are not exhaustive but are a guide for the teacher as they structure the move from informal to formal methods of calculation. It is vitally important that children's mental methods of calculation continue to be practised and secured alongside their learning and use of an efficient written method for each operation.

A pathway to teaching calculation methods:

Expanded methods should be viewed as steps towards a standard method and not as methods in themselves.
Before beginning to record in a more refined written format children must have had significant practical work reinforced with appropriate manipulatives, models and images.
Teachers will guide pupils to refine their written methods of recording by modelling and asking questions such as "What is the same? What's different?" Learning will be planned to ensure pupil are encouraged to use and apply what they have learnt to problem solving tasks.
As children move along the pathway it is vital that they practice, reinforce, consolidate, use and apply it to mathematical learning and NOT simply move onto the next step.
Point to note: Teachers should refer to the programme of study for key vocabulary for each year group.

Stage 1 (Reception)

 objects, they add and subtract two single digit numbers and count on or back to find the answer. They solve problems, including doubling, halving and sharing

Addition and subtraction

Count from 1-20

Say which number is 1 more than a given number
Using quantities and objects add two single digit numbers.

Addition by counting on
Say which number is 1 less than a given number
Using quantities and objects subtract two single digit numbers

Subtraction by counting back.

Exemplification and suggested manipulative

 For one more/ lessRhymes and songs eg 5 Currant buns
Numicon, fingers, objects and toys.
Adding using two groups of objects and counting them all.
Objects or toys (because they can be moves into one group), then numicon. (where you are treating the numbers as objects themselves and joining the pieces together to make the total shape.)

Addition by counting on - using numicon and adding one more, then counting on from the original number epresented by numicon
Moving on to number cards, holding bigger numbe in their heads and counting on with numicon or fingers to support
Number lines used to count on/back
Double sided counters for number bonds
Subtraction by taking away and counting how many are left
Objects, skittles game, pictures on IWB which are deleted.

Subtraction by counting back.
Objects where the number to be subtracted has
been separated from the set. Then count back whilst moving the separated pieces.
Numicon using ones and again separating the
number to be taken away before counting back.
This is to prevent double counting, which is far too difficult at this stage.

All of this work is not formally recorded until the Summer term, however every calculation is spoken out orally eg six and four is the same as ten, ten take a way four is the same as six.
When recording, the words add, subtract and equals are introduced.)

They solve problems, including doubling, halving and sharing

Combining groups of 2,5 , or 10 (Exceeding)

Exemplification and suggested manipulatives Exemplification and suggested manipulatives to 5 .
Doubling using numicon/double sided counters Also with objects, spots on a ladybird etc.

Halving using numicon and fingers as the opposite of doubling
Using object, toys, playdoh cakes and sand cakes.
Pictures/Objects
cakes shared between 6 (not recorded)

Counting in 2's, 5's and 10's using songs, numicon, fingers, objects and toys eg. Cones placed on top of each other
Arrays - double sided counters
 should involve working with the four operations.

Stage 2 (Year 1)

should include the terms: put together, add, altogether, total, take away, distance between, difference between, more than and less than	Please note the jumps would take place on a fully numbered numberline. Use known facts/partitioning using straws, numicon, bead strings, dice Remember the importance of partitioning numbers in different ways to support place value in Year 2 onwards. $\begin{gathered} 8+5+13 \\ (8+2=10 \\ 10+3=13) \\ 13-5=8 \\ (13-3=10 \\ 10-2=8) \end{gathered}$		Division Pictures/Objects Difference between sharing and grouping. 6 cakes shared between 2 (26) \because 6 cakes put into groups of 2 Pictures/Symbolic How many apples in each bowl if I share 12 apples between 3 bowls? Visual (modelled using bead strings) $15 \div 5=3$ Arrays $\begin{array}{ll} 15 \div 5=3 & 00000 \\ & 00000 \\ & 00000 \end{array}$ 15 is shared between 3

 fluency.

representations,
including those involving numbers,
quantities and
measures
applying their
increasing
knowledge of menta and written methods
> Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100
> Add and subtract numbers using concrete objects pictorial representations, and mentally, including: $\square \square$ a two-digit number and ones
$\square \square$ a two-digit number and tens

- \square two two-digit numbers
$\square \square$ adding three one-digit numbers
> Show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot
> Recognise and use the inverse relationship between
(Fully numbered number line at beginning of \quad problems in contexts. year)

Counting on $84-48=36$

(Fully numbered number line at beginning of year)

Partitioning and recombining.

Remember the importance of partitioning numbers in different ways to support place value.
$35+47=$
$30+40+5+7=$
$70+12=82$
$58+30=88$

$95-60=35$

They begin to relate these
to fraction and measures
(for example, $40 \div 2=20$,
20 is a half of 40). They use commutivity and inverse relations to develop multiplicative reasoning (for example, $4 \times 5=20$ and 20 $\div 5=4$).

Division

Pictures/Symbolic
Four eggs fit in a box.
How many boxes would you need to pack 20 eggs?

望

Visual
(modelled using bead strings)

Arrays
Find $1 / 4$ of 24
$24 \div 4=6$

Partitioning
$32 \div 2=16$
$20 \div 2=10$
$12 \div 2=6$
addition and
subtraction and use
this to check
calculations and
solve missing number problems.

- Pupils should partition numbers in different ways (for example, $23=20+$ 3 and $23=10+13$) to support subtraction. They become fluent and apply their knowledge of numbers to reason with, discuss and solve problems that emphasise the value of each digit in twodigit numbers. They begin to understand zero as a place holder
> Record addition and subtraction in columns to support place value and prepare for formal written methods with larger numbers.

 large whole numbers.

$\begin{array}{lr}\text { and division } & \text { including } \\ \text { positive integer } & \text { scaling } \\ \text { problems } & \text { and }\end{array}$
correspondence problems
in which n objects are connected to m objects.
(For example, four times as high, eight times as long etc.
correspondence
problems in which m
objects are connected to n
objects (for example, 3
hats and 4 coats, how many different outfits?; 12 sweets shared equally between 4 children; 4 cakes shared equally between 8 children).
$>$ recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominators (1/3, 2/4, 3/4)
Pupils connect tenths to place value, decimal measures and to division by 10.

Cuisenaire alongside for understanding.
$36 \times 4=144$
$30 \times 4=120$
$6 \times 4=24$
$36 \times 4=144$
36
$\begin{array}{r}\times \quad 4 \\ \hline 24\end{array}$
$(30 \times 4) \quad 120$
$36 \times 4=144$
36

$$
\begin{aligned}
& x \quad 4 \\
& \hline \frac{144}{2}
\end{aligned}
$$

Division

$96 \div 4=24$

Multiples of the divisor)
$85 \div 5=17$
$10 \times 5=50$

$$
7 \times 5=35
$$

$\frac{30}{21}(3 \times 10)$

$$
\frac{21}{0}(3 \times 7) \quad 51 \div 3=17
$$

We would use the subtraction sign at the side and write "and" or leave a gap between the numbers. Formal written methods for addition and subtraction Compact vertical Modelled Using e.g. Diennes Place value Counters$\begin{array}{r} 374 \\ +\frac{248}{\frac{622}{11}} \\ \begin{array}{r} 874-523=3511 \\ \text { (no decomposition } \end{array} \end{array}$874 $-\quad 523$ 351 Decomposition Using e.g. Diennes Place value Counters $932-457=475$		$\begin{array}{r} 51 \div 3=17 \\ 17 \\ 3 \longdiv { 5 ^ { 2 } 1 } \end{array}$

Stage 5 (Year 4)

Addition and subtraction		Multiplication and division	
Statutory and Non statutory Guidance	Exemplification and suggested manipulatives	Statutory and Non statutory Guidance	Exemplification and suggested manipulatives
Find 1000 more or less than a given number Count backwards through zero to include negative numbers They practise counting using simple fractions and decimal fractions, both forwards and backwards	Mental methods of addition and subtraction. Using complements to ten and a hundred, number bonds, bridging through ten, a hundred and a thousand, doubles and near doubles, compensating, commutative and associative rules, partitioning and recombining, and inverse operations. Numicon, number line,100 square, Dienne's bead strings, Cuisenaire place value arrow cards, place value counters, counting stick. Number lines as a visual image for mental calculations. Subtraction by counting on with a number line.	Count in multiples of 6, 7 , 9, 25 and 1000 Using a variety of representations, including measures, pupils become fluent in the order and place value of numbers beyond 1000 , including counting in tens and hundreds, and maintaining fluency in other multiples through varied and frequent practice.	commutative, associative and distributive laws, array, scaling, factors Numicon, Cuisenaire, Place value cards/slider Informal recording might be: 43 We would record this as: 40×6= $3 \times 6=$ Also record mental multiplication using partitioning:
Add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate	Estimate and use inverse operations to check answers to a calculation. Informal written methods for addition and subtraction Compact vertical Modelled Using e.g. Diennes Place value counters until proficient.	Recall multiplication and division facts for multiplication tables up to 12×12 Use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ;	$\begin{aligned} 14 \times 3 & =(10+4) \times 3 \\ & =(10 \times 3)+(4 \times 3)=30+12=42 \\ 43 \times 6 & =(40+3) \times 6 \\ & =(40 \times 6)+(3 \times 6)=240+18=258 \end{aligned}$ Note: These methods are based on the distributive law. Children should be introduced to the principle of this law in Years 3 and 4, for example when they use their knowledge of the 2,5 and 10 times-tables to work out multiples of 7: Shown using arrays of counters
Estimate and use inverse operations to check answers to a calculation	$789+642=1431$	dividing by 1 ; multiplying together three numbers Pupils practise mental methods and extend this to three-digit numbers to	$\begin{array}{ll} 0000000 & 00000 \ldots 00 \\ 0000000 & 00000 \ldots 00 \\ 0000000 & 00000 \ldots 00 \\ 7 \times 3=(5+2) \times 3=(5 \times 3)+(2 \times 3)=15+6=21 \end{array}$
Solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why. Add and subtract	Decomposition: 1374-968=406 Place value counters alongside until proficient.	derive facts, (for example $600 \div 3=200$ can be derived from $2 \times 3=6$) Recognise and use factor pairs and commutativity in mental calculations Pupils write statements	$43 \times 6=258$ (estimate: $40 \times 6=240$) $\begin{array}{r} 40 \times 6=240 \\ 3 \times 6=18 \end{array}$

Stage 6 (Year 5)
At this stage, pupils should develop their ability to solve a wider range of problems, including increasingly complex properties of numbers and arithmetic, and problems demanding efficient written and mental methods of calculation. With this foundation in arithmetic, pupils are introduced to the language of algebra as a means for solving a variety of problems.

Addition and subtraction		Multiplication and division		
Statutory and Non statutory Guidance	Exemplification and suggested manipulatives	Statutory and Non statutory Guidance	Exemplification and suggested manipulatives	
Addition and subtraction		Multiplication and division		
Pupils extend counting from year 4 , using decimals and fractions including bridging zero, for example on a number line. > Add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction) > Add and subtract numbers mentally with increasingly large numbers. They mentally add and subtract tenths, and one-digit whole numbers and tenths. Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy Solve addition and subtraction multi-	Mental methods of addition and subtraction. Using complements to ten and a hundred, number bonds, bridging through ten, a hundred and a thousand, doubles and near doubles, compensating, commutative and associative rules, partitioning and recombining, and inverse operations. Numicon, number line,100 square, Dienne's bead strings, Cuisenair, bundles of straws place value arrow cards, place value counters, counting stick. Place value chart Number lines as a visual image for mental calculations. Subtraction on a number line as counting on. Estimate and use inverse operations to check answers to a calculation. Informal written methods for addition and subtraction Expanded vertical Modelled using Place value counters until proficient.	Count forwards or backwards in steps of powers of 10 for any given number up to 1000000 > Multiply numbers up to 4 digits by a one- or twodigit number using a formal written method, including long multiplication for two-digit numbers. Pupils use and explain the equals sign to indicate equivalence, including in missing number problems (for example, $13+24=12$ $+25 ; 33=5 \mathrm{x} \square)$. > Multiply and divide numbers mentally drawing upon known facts They apply all the multiplication tables and related division facts frequently, commit them to memory and use them confidently to make larger calculations. Divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret	Cuisenaire, Numicon, ITP, bundles of straws $47 \times 36=1692$ (estimate 50×40 $27 \times 34=918$ (estimate $30 \times 30=900$) $\begin{array}{rll} \mathbf{2 7} & & \\ \mathbf{x} \mathbf{3 4} & & \\ \hline \mathbf{2 8} & (7 \times 4) \\ \mathbf{8 0} & (20 \times 4) \\ \mathbf{2 1 0} & (7 \times 30) \\ \mathbf{6 0 0} & (20 \times 30) \\ \hline \mathbf{9 1 8} & & \end{array}$ $2741 \times 6=16446$ (estimate $3000 \times 6=18000$ $24 \times 16=384 \quad \text { (estimate } 25 \times 15=375 \text {) }$	2 24 $\times \quad 146$ 240 144 384

step problems in contexts, deciding which operations and methods to use and why.

- Solve problems involving addition, subtraction, (multiplication and division) and a combination of these, including understanding the meaning of the equals sign
> Add and subtract fractions with the same denominator and denominators that are multiples of the same number
Pupils practise
adding and subtracting fractions to become fluent through a variety of increasingly complex problems. They extend their understanding of adding and subtracting fractions to calculations that exceed 1 as a mixed number.

Taking away
(Partitioning)
72.5 - 45.7
$72.5-40=32.5$
32.5-5 $=27.5$
$27.5-0.7=26.8$

Formal written methods for addition and

subtraction
Compact vertica
Modelled using
Place value counters until proficient.
'Carrying'
23.70
$+48.56$

11 (cross off when used)
Decomposition: exchanging
$72.5-45.7=26.8$

$$
\begin{array}{r}
67^{11} 2^{1} 5 \\
-\quad 45.7 \\
\hline 26.8
\end{array}
$$

Fractions addition and subtraction

Number line, Paper cut up, cuisinaire- longer block with 2 blocks that make up the same amount next to it.
$3 / 12+1 / 8=$
With squared diagram
Start with the largest number 12.8 is not a multiple of 12 so double 12 and 8 is a multiple of 24 . Make rectangle split into 24 squares. Work out how many squares $1 / 12$ and $1 / 8$ are compared with $1 / 24$, by using parallel strips divided into $1 / 8$ ths and $1 / 12$ ths.
remainders appropriately for the context.
Pupils interpret non
integer answers to
division by expressing
results in different ways
according to the context, including with remainders, as fractions, as decimals or by rounding (for example, $98 \div 4=98 / 4=$ 24 r2 $=241 / 2=24.5 \approx$ 25).
> Multiply and divide whole numbers and those involving decimals by 10 , 100 and 1000
Distributivity can be expressed as $a(b+c)=$ $a b+a c$.
> They understand the terms factor, multiple and prime, square and cube numbers and use them to construct equivalence statements (for example,
$4 \times 35=2 \times 2 \times 35$;
$3 \times 270=3 \times 3 \times 9 \times 10$
$=9^{2} \times 10$
> Solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes, scaling and simple fractions including understanding the meaning of the equals sign.
$124 \times 26=3224$ [see Y6]

(carry on bottom)

Division: place value counters
Mental division using partitioning:
(as in Year 4)
$64 \div 4=(40+24) \div 4$
$=(40 \div 4)+(24 \div 4)$
$=10+6=16$
$87 \div 3=(60+27) \div 3$

$$
=(60 \div 3)+(27 \div 3)
$$

$$
=20+9=29
$$

Remainders after division can be recorded similarly.
$96 \div 7=(70+26) \div 7$

$$
\begin{aligned}
& =(70 \div 7)+(26 \div 7) \\
& =10+3 R 5=13 R 5
\end{aligned}
$$

$346 \div 8=43 r 2$ (estimate $>40,<50$)

Colour correct number of squares for 3/12 and 1/8= $9 / 24=3 / 8$
$3 / 12+1 / 8=$
Formal method

1. Find the common denominator
2. Express each fraction as its equivalent fraction with the common denominator.
3. Add numerators and place over common denominator.
4. Simplify.

Tenths/ hundredths- use bead strings and diennes. Remember the importance of partitioning numbers in different ways to support place value.

Pupils use multiplication and division as inverses to support the introduction of ratio in year 6 , for example, by multiplying and dividing by powers of 10 in scale drawings or by multiplying and dividing by powers of a 1000 in converting between units such as kilometres and metres.
> Multiply proper fractions and mixed numbers by whole numbers,
supported by materials and diagrams.
Pupils connect equivalent fractions > 1 that simplify to integers with division and other fractions > 1 to division with remainders, using the number line and other models, and hence move from these to improper and mixed fractions. Pupils connect multiplication by a fraction to using fractions as operators (fractions of), and to division, building on work from previous years. This relates to scaling by simple fractions, including fractions >1.
> Recognise and use thousandths and relate them to tenths,
hundredths and decimal equivalents

- Solve problems involving number up to three

$346 \div 8$

(estimate: $400 \div 8=50$)

$$
\begin{aligned}
8 \longdiv { 3 4 6 } & \\
-\frac{320}{26} & (8 \times 40) \\
-\frac{24}{2} & (8 \times 3)
\end{aligned}
$$

$432 \div 5=86$ r2
(estimate: $400 \div 5=80$)

$8520 \div 6=1420$

$$
\begin{gathered}
1420 \\
6 \longdiv { 8 ^ { 2 } 5 2 0 }
\end{gathered}
$$

NB: Remainders need to be shown as decimals, fractions and remainders, so children see the link between the 3

Fractions multiplication

$2 / 3 \times 2=1 / 2$
Use cuisinaire and lay out 2 of the 3 rods then another 2 . $4 / 3=11 / 3$
Fraction stacks, fraction action

Or use diagrams-

1	1	1
$/$	$/$	$/$
3	3	3

Stage 7 (Year 6)
 percentages.

	Addition and subtraction	Multiplication and division	
Statutory and Non statutory Guidance	Exemplification and suggested manipulatives	Statutory and Non statutory Guidance	Exemplification and suggested manipulatives
Solve number and practical problems involving numbers up to 10000000 , using negative numbers in context and calculating intervals across zero. Pupils practise addition, subtraction, for larger numbers, using the formal written methods of columnar addition and subtraction.	Mental methods of addition and subtraction. Using complements to ten and a hundred, number bonds, bridging through ten, a hundred and a thousand, doubles and near doubles, compensating, commutative and associative rules, partitioning and recombining, and inverse operations. Numicon, number line, 100 square, Dienne's bead strings, Cuisenaire place value arrow cards, place value counters, counting stick. Number lines as a visual image for mental calculations. Subtraction on a number line using counting on method. Estimate and use inverse operations to check answers to a calculation.	Pupils continue to use all the multiplication tables to calculate mathematical statements in order to maintain their fluency. multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole	Cuisenaire, Numicon, place value counters Numbers up to 4 digits. $\begin{aligned} & 256 \times 18=4608 \\ & \text { (estimate } 250 \times 20=5000 \text {) } \end{aligned}$ $\begin{array}{r} 256 \\ \times \quad 18 \\ \hline 2560 \\ \hline \frac{2048}{4608} \\ \hline 1 \end{array}$
perform mental calculations, including with mixed operations and large numbers.	Informal written methods for addition and subtraction Expanded vertical Modelled using Place value counters until proficient.	number remainders, fractions, or by rounding, as appropriate for the context	$124 \times 26=3224$
solve addition and subtraction multistep problems in contexts, deciding which operations and methods to use and why	Expanded vertical $\begin{gathered} 3.243+18.070=\mathbf{2 1 . 3 1 3} \\ 3.243 \\ +\quad 18.070 \\ \hline 0.003 \\ 0.110 \\ 0.200 \end{gathered}$	divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context	
add and subtract fractions with different denominators and mixed numbers,	$\frac{21.000}{21.313}$ Formal written methods for addition and	solve problems involving (addition, subtraction,) multiplication and division	NB See Y5 method $4.7 \times 8=37.6$

using the concept of equivalent fractions They should start with fractions where the denominator of one fraction is a multiple of the other (for example, $1 / 2+$ $1 / 8=5 / 8$) and progress to varied and increasingly complex problems.
subtraction
Compact vertical
Modelled using
Place value counters until proficient.
Compact vertical

$$
3.243
$$

+ 18.070
21.313

11

Subtraction by decomposition as in Year 5.

Fractions addition and subtraction

Number line, Paper cut up, cuisinaire- longer block with 2 blocks that make up the same amount next to it.
$3 / 12+1 / 8=$
With squared diagram
Start with the largest number 12.8 is not a multiple of 12 so double 12 and 8 is a multiple of 24 . Make rectangle split into 24 squares. Work out how many squares $1 / 12$ and $1 / 8$ are compared with $1 / 24$, by using parallel strips divided into $1 / 8$ ths and $1 / 12$ ths. Colour correct number of squares for $3 / 12$ and $1 / 8=$ $9 / 24=3 / 8$
$3 / 12+1 / 8=$
Formal method

1. Find the common denominator.
2. Express each fraction as its equivalent fraction with the common denominator.
3. Add numerators and place over common denominator.
4. Simplify.

Tenths/ hundredths- use bead strings and diennes. Remember the importance of partitioning numbers in different ways to support place value.
multiply simple pairs of proper fractions, writing the answer in its simplest form (e.g. ${ }^{1} / 4 \times 1 / 2=1 / 8$)
Pupils should use a variety of images to
support their
understanding of
multiplication with
fractions. This follows
earlier work about
fractions as operators
(fractions of), as numbers, and as equal parts of objects, for example as parts of a rectangle.
$>$ divide proper fractions by whole numbers (e.g. ${ }^{1} /{ }_{3} \div$
$2={ }^{1} /{ }_{6}$) They practise calculations with simple fractions and decimal fraction equivalents to aid fluency, including listing equivalent fractions to identify fractions with common denominators.
> associate a fraction with division and calculate decimal fraction equivalents [for example, 0.375] for a simple fraction [for example, 3/8] pupils use their
understanding of the relationship between unit fractions and division to work backwards by multiplying a quantity that represents a unit fraction

```
(estimate \(5 \times 8=40\) )
    4.7
    X
```

\qquad

```
        37.6
```

[Or 47×8, then divide the solution by 10.]
$5.65 \times 9=50.85$
(estimate $6 \times 9=54$)

$$
\begin{array}{l|r|r|r|r}
\times & 5 & 0.6 & 0.05 & \\
\hline 9 & 45 & 5.4 & 0.45 & 50.85
\end{array}
$$

[Or compute 565×9, then divide the solution by 100.]

Division

$43.4 \div 7=6.2$
(estimate $42 \div 7=6$)
$6 \times 7=42$
$0.2 \times 7=1.4$
$25.6 \div 7=3.2$
(estimate $>3,<4$)
$25.6 \div 8$
(estimate: $24 \div 8=3$)
$8 \longdiv { 2 5 . 6 }$
$-\underline{24.0} \quad(8 \times 3.0)$
-1.6
(8×0.2)

		simplest cases, such as $0.4 \times 2=0.8$, and in practical contexts, such as measures and money. Pupils are introduced to the division of decimal numbers by one-digit whole number, initially, in practical contexts involving measures and money. They recognise division calculations as the inverse of multiplication.	NB: Remainders need to be shown as decimals, fractions and remainders, so children see the link between the 3 . Fractions multiplication and division $2 / 3 \times 3 / 4=2 / 4=1 / 2$ Use cuisinaire and place 2 of the 3 rods next to 3 of the 4 rods. There will be 6 out of the 12 , which is $6 / 12=1 / 2$. Using diagrams- $1 / 4$ $3 / 4$ $1 / 3$ of $3 / 4$ $2 / 3$ of $3 / 4=2 / 4=1 / 2$ $1 / 3 \div 2=1 / 6$ Use of fraction walls and cutting up paper.

